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Abstract

An improved chemometric approach is proposed for assessing chromatographic peak purity by means of artificial
neural networks. A non-linear transformation function with a back-propagation algorithm was used to describe and
predict the chromatographic data. The Mann-Whitney U-test was used for the concluding the purity of the
chromatographic peak. Simulation data and practical analytical data for both pure and mixture samples were
analysed with satisfactory results. A prior knowledge of the impurity and the related compound is unnecessary
when a slight difference between their chromatogram and spectrum exists. The performance on simulated data sets
by this approach was compared with the results from principal component analysis.
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1. Introduction

Chromatographic methods are often used for
the determination of active components in phar-
maceutical analysis. One of the main problems
associated with developments in the chromato-
graphic laboratory is assessing the purity of
analyte peaks. Many workers are interested in
solving this problem for more reasonable appli-
cations of chromatographic techniques. Some
studies [1,2] have demonstrated that it is possible
to detect impurities using liquid chromatography
with computer-aided photodiode-array detectors
provided that a slight difference between the
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chromatogram and spectra of components exists.
The determination of chemical purity in chroma-
tography can be divided into two categories:
instrumental and chemometric methods. The
common methods used to assess peak purity with
such chromatographic instruments include the
following: normalizing and comparing spectra
from various peak sections using a match factor
[3]; absorbance ratio approach using the absor-
bance signals at two wavelengths [4]; multiple
absorbance ratio [5]; and multiple absorbance
ratio correlation [6] with higher sensitivity. Spec-
tral suppression [7], derivative spectroscopy [8]
and the spectral derivative null technique [9]
were developed for the determination and identi-
fication of active analyte peaks with multiple
components. Some chemometric approaches,
e.g., self-modelling curve resolution [10], princi-
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pal component analysis (PCA) [11,12] and evolv-
ing factor analysis [13], have also been proposed
for the assessing peak purity. The efficiency of
these techniques depends on the level of a priori
information available about the system and the
degree of analysis desired.

In this paper, we propose a method using
artificial neural networks to determine peak
homogeneity. The applications of neural net-
works theory in chemistry have been fully de-
scribed [14,15]. Artificial neural networks are
computational simulations of human cerebral
signal processing. This technique has been ap-
plied in analytical science as a kind of accurate
calibration model [16-20] for multivariate data
analysis, e.g., pattern recognition, structure eluci-
dation, process control and many other branches
of analytical applications. A cerebellar model
arithmetic computer neural network [21] was
applied for the deconvolution of overlapping
chromatographic peaks. A neural network with
normalized UV spectra and peak areas measured
in one chromatogram was proposed for peak
tracking [22]. From these successful applications,
it has been demonstrated that artificial neural
networks have the power to derive empirical
models from a collection of example cases for
systems where the theoretical relationship be-
tween the experimental system and the expected
model is unclear. The purpose of this paper is to
demonstrate the power of neural network tech-
niques using back-propagation in the identifica-
tion of chromatographic peak purity by both
practicable examples and computer simulations.

2. Theory and algorithm

The theoretical basis of the approach in this
paper is the back-propagation algorithm used in
most artificial neural network applications. The
neural networks are usually built from a connect-
ing feed-forward layered structure of neurons.
The structure of the networks consists of three
layers, namely the input layer, the hidden layer
and the output layer. In this study, the first layer
of the network, the input layer, consists of 20

absorption values of each chromatographic re-
sponse in training sets. The second is the hidden
layer of neurons receiving the weighted outputs
from the input layer and producing output sig-
nals inputting to the output layer. The output
layer produces the output signals, corresponding
to chromatographic responses in training sets.

The spectral signals from the chromatogram
can be given by

Y= 2 WX, +3§ )
i=1

where (X, X,, X;,...,X,,) represent the ab-
sorbance vector inputting to the node, (W,;, W,
W,,...,W,;) corresponds to the weighting ab-
sorptivity vector, Y, is the output absorbance
vector, g, is the calculated bias parameter and m
is the number of synapses for the neural node.

The non-linear model, which has been shown
to be more appropriate as a transformation
function for the weighted connection between
layers in networks for peak tracking of a spec-
trum [18-20,22], was used in this study. The
expected output vector O, is from the sum of the
weighted inputs which is transformed with a non-
linear sigmoidal transfer function:

1

0;= 1+ Y0 (2)

This function has an output in the range from 0
to 1. From Eq. 1, where Y, is the weighted sum of
the inputs X, the bias parameter 6, is used to
modify the shape of the sigmoidal curve.

According to the back-propagation algorithm,
X, is propagated through the network to the
output layer. The errors between the output
response vector and the expected response vec-
tor are used to correct the weights as usually
described.

Simulated data were used to establish the
performance of this new approach. Both the
chromatogram and the spectrum of the com-
ponents can be simulated by a general Gaussian
distribution. The spectral signals for each time
point on the chromatogram response curve can
be simulated by the following equation:
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(3)
where C; is the concentration corresponding the
height of the ith chromatographic peak, x; is the
wavelength of the spectrum with the centre
wavelength u, , y, is the retention time of the
peak with retention g, and o;, and o;, are the
standard deviation of the peaks of the spectrum
and chromatogram corresponding a quarter of
the peak width at the peak base. For the purpose
of this simulation, x;, y, and C, are in arbitrary
units.

It was noted that the normalized errors should
be added to the responses produced by Eq. 3 to
match realistic cases. The algorithm for the
generation of normally distributed random num-
bers proposed by Zupan (23] was used. The
relative standard deviation for the responses was
fixed at 3% to fit the general error level in HPLC
and UV determinations.

The data set for a simulated example is listed
in Table 1. The response surface of this example
calculated by Eq. 3 is shown in Fig. 1. To make
the plot clear, the range for the time axis is from
#, —20y to u, + 60y, and similarly the range of
the wavelength axis is from u, — 20x to u_+ 60x.

Since this approach is based on the difference
between the spectrum and the chromatogram of
a sample, two criteria, the resolution (R,) and
the spectrum similarity (r), are used in this study.
The resolution of two adjacent peaks was calcu-
lated by the equation

i1y = My

53, T ) Y

Table 1
A case of simulated data sets producing the plot in Fig. 1

2su0dsdy

\\\

Fig. 1. Response surface for a simulated two-component
example. For data sets, see Table 1.

The correlation coefficient [24] was selected to
express the spectrum similarity between two
spectra for two pure components. For the case in
Fig. 1, the resolution R;=0.75 and the correla-
tion coefficient r = 0.79 (see Table 1).

From Fig. 1, it is observed that the first peak
produced by the main component is overlapped
by the second peak of an impurity. The purpose
of this study was to explore the approach when
the peak of the impurity is buried by the peak of
the main component, which means the resolution
of the main component and the impurity should
generally be lower than 1.0. On the other hand,
the retentions of components should be different
and the spectral responses of components should
be detectable with a computer-aided photodiode-

Parameter Main component Impurity Resolution Correlation
(R,) coefficient (r)

C,.. 100 30

o, 2 2

a, 2 2 0.75 0.79

M, 20 18

A 20 2
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array UV detector. In this case it turns out that a
difference in the spectra between one half of the
chromatographic peaks and the other half cer-
tainly exists. Therefore, we may train the data
sets of the front half of each peak and test the
responses of the back half using artificial neural
network techniques. To abstract more informa-
tion on the difference of the two parts of spectral
data caused by the presence of an impurity, only
the range of the peak base is taken into account.

Therefore, the responses which are distributed
from time point 1 to 10 on the axis in Fig. 1 were
used, i.e., from 16 (20—-2X2) to 24 (20+2 X 2)
of the retention for this simulated case. Then in
this range of the peak base it is divided into nine
parts to obtain ten time points. In a similar
manner, twenty wavelength points can be ob-
tained in the range of the peak base of the
spectrum. One computes twenty spectral re-
sponses for each of ten time points by Eq. 3 to
obtain a 10X 20 matrix of the chromatogram-
spectral responses simulated.

Subsequently, ANN is performed based on the
spectral data of five time points of the front half
as the training sets and five time points of back
half as the testing sets. The output of the compu-
tation is the ten predictive values of the chro-
matographic responses. Of course, the predictive
values of training sets should coincide well since
the ANN model is produced from this set while
the results of testing sets depend on the purity of
the peak.

If the differences in the experimental and
computed values between the training sets and

Table 2
Computation results for data sets in Table 1

testing sets are statistically significant, the peak
purity is very suspicious so that the peak purity
can be evaluated. To assess the difference be-
tween the training sets and the testing sets, a
possible way is to perform a t-test on the two
groups of differences between experimental val-
ues and computed values for both the training
and testing sets. However, the ¢-test assumes that
the results for each set are normally distributed
and it seems that the normal distributions can
mostly be obtained with pure substances but not
when an impurity is present. For this reason, we
propose to adopt a non-parametric test, namely
the Mann-Whitney U-test [23], for assessing the
peak purity as follows.

As shown in Table 2, one first ranks all the
data of the absolute differences between the
experimental values and computed values in both
the training and testing sets, giving rank 1 to the
lowest rank, rank 2 to the second, etc. Then we
compute the sums of ranks, R, and R,, equals to
17 and 38 in these two groups, respectively. Next,
one computes

U =40-R,=23
U,=40-R,=2
where 40 is from nXn+n(n+1)/2; n, the

number of paired data, equals 5 for this case. The
statistical hypothesis is stated as

Hy:U =U,
H:U #U,

This test in fact compares the median of two

Training sets

Testing sets

1 2 3 4 5 6 7 8 9 10

Simulated 0.0135 0.0297 0.0507 0.0795 0.0942 0.0999 0.0870 0.0620 0.0478 0.0412
Predicted 0.0131 0.0290 0.0526 0.0778 0.0953 0.0987 0.0802 0.0581 0.0401 0.0331
Difference 0.0004 0.0007 0.0019 0.0017 0.0011 0.0012 0.0068 0.0039 0.0077 0.0081
Rank 1 2 6 N 3 4 8 7 9 10

R =17 R, =38

U =23 ,=2
Conclusion Impure
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samples. The smaller of the two U values is used
to compare with table (U,, s, =4.0at a =0.10)
for a two-tailed test with ten points. When the
computed value is larger than 4.0, the null
hypothesis is accepted and one concludes that
the peak is pure at the 90% confidence level.
Otherwise, the null hypothesis may be rejected
and the peak purity is suspect. For this case,
because U = min(U,, U,) = 2.0, the conclusion is
“impure”, indicating that the impurity exists.

For samples with a retention time of the
impurity longer or shorter than that of the main
substance, a difference in ANN models between
the training sets and testing sets always exists
provided that the chromatogram and spectral
data show a difference, and the chromatographic
peak purity can therefore be evaluated by the
above algorithm.

3. Experimental
3.1. Instrumentation

An HP-1050 liquid chromatograph with com-
puter-aided photodiode-array detectors was
used. The column was a stainless-steel column
(250 X 4.6 mm [.D.) packed with Spherisorb-C
of particle size 5 um. Injections of sample of 20
wul were used. All experiments were carried out
at room temperature and a flow-rate of 1 ml/
min.

3.2. Chemicals

All drugs were of pharmaceutical purity. Stock
solutions of the drugs, namely caffeic acid, 3,4-
dihydroxybenzoic acid, salicylic acid and 4-hy-
droxybenzoic acid, were prepared by dissolving
accurately weighed 50-mg amounts in 50 mi of
methanol. The solutions were mixed and diluted
with methanol to the final injected concentra-
tions. Purified water was obtained from unboiled
pure water in a quartz glass distillation system.
To prepare phosphate buffer with various pH
values, 0.05 mol/l sodium dihydrogenphosphate

monohydrate was adjusted with 85% phosphoric
acid precisely to the final pH value; a PHS-25
digital pH meter was used and the electrodes
were calibrated with standard buffer solutions.
The buffer solution was filtered through mem-
brane filters (0.5 wm) before use.

3.3. Software

Computer programs for experimental data and
simulation data, written in Fortran 77, running
on a PC-compatible 80486, 33 MHz computer
under MS-DOS 6.2 were developed by the au-
thors. Graphical outputs were produced by Graf-
tool (Release 3.3; 3-D Visions, 1990).

3.4. Procedures

Gaussian elution profiles with the normalized
error added at the 3% level were used to
simulate chromatograms and UV adsorption
spectra with the parameters over a wide range as
described later. Experimental data were obtained
by using several practical samples. The mobile
phase of methanol-phosphate buffer (pH 3.5)
were adjusted to a chromatographic resolution of
R, <1 to demonstrate the feasibility of the ap-
proach.

For real samples, chromatographic signals
were first collected to determine the position of
peak base of the main component in an initial
test, the peak base was split into nine parts with
equal intervals so that ten time points were
obtained, then ten chromatogram signals were
recorded at each time point after repeated tests.
Subsequently, twenty spectral signals were re-
corded in the range 210-400 nm at equal inter-
vals of 10 nm. In this way, 10 X 20 data sets were
obtained for each sample.

The output results of calculations include the
resolution of adjacent peaks on the chromato-
gram, the spectral similarity of components and
the predicted responses of the chromatogram for
each sample. The conclusion “pure” or “impure”
was also shown according to the results of the
Mann-Whitney U-test.
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4. Results and discussion

To perform artificial neural network tech-
niques, several parameters need to be estab-
lished. As mentioned above, the magnitude of
the chromatogram-spectral signal matrix was
fixed at 10 X 20. In fact, we also tested larger and
smaller matrices. It was found that when more
points were employed it is probably easy to
detect an impurity with a tiny difference but
more computation time is needed. The number
of nodes in the hidden layer is also a parameter
to be adjusted. It was fixed at 5 according to Ref.
[11].

The number of iterations is another adjustable
parameter. Convergence to a minimum error
usually needs many learning iterations, which
may range from hundreds to tens of thousands
depending on the complexity of the models. We
tested various samples, including simulated and
real, pure substances and mixtures. Some results
are shown in Fig. 2. The relative standard devia-
tion (R.S.D.) is used to evaluate the effect of
convergence. Surprisingly, the results show that

1009
80

. bl

0 500 1000 1500 2000 2500 3000
Numbers of iterations

Fig. 2. Results for the number of learning iterations. (1) The
example simulated: for data sets, see Table 1. (®) Training
sets; (A) testing sets. (2) A real sample: salicylic acid + 5%
4-hydroxybenzoic acid. (O) Training sets; (A) testing sets.

1000 iterations are sufficient to give a stable
estimate value. Fig. 2 also shows that a real
sample needs more iterations to give conver-
gence than simulated data sets in which a simple
Gaussian peak is used to describe the simulated
UV spectra. Owing to the added error at the 3%
level in the simulation, the R.S.D. is about 2.7%
for the training sets of the simulated data sets
whereas the R.S.D. for real samples for training
sets is less than 0.1% after reaching convergence.
Although training artificial neural networks is
generally time consuming, only 16 s are required
for 1000 iterations on the 80486 operating at 33
MHz. We also tested the same data on an 80286
computer operating at 25 MHz but more than 15
min were needed.

The gain, the learning rate and the momentum
also affect the performance of ANN. We applied
a similar method to Fig. 2 to optimize these
parameters. The gain and the learning rate are
both fixed at 1.0 and the momentum factor at 0.8.

All these parameters were fixed at a certain
level in order to perform automatic peak purity
control procedures easily in HPLC. The results
on simulated data sets and practical examples
introduced afterwards show that the procedure
behaves well.

The results in Fig. 2 indicated that using the
real spectrum of a component is more desirable
than using only one simple peak simulated as in
our study. However, in the latter approach it is
easy to compare more cases with different spec-
tral similarity. Additionally, it will be more
precise if the exponentially modified Gaussian
(EMG) function [25] is used in modelling the
chromatographic peaks. However, it seems too
complex to simulate the chromatogram-spec-
trum for this application. For the above reason,
the simple Gaussian peaks with normal noise at
the 3% level are still employed in our simulation
tests.

Table 3 lists the results for the data from the
practical data sets. The first four samples are
pure substances and the values of min(U,,U,) are
larger than or equal to the criterion value 4
(a =0.10), so that the null hypothesis may be
accepted and no significant difference between
the training sets and the testing sets exists. For
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Table 3

Results for practical examples

Sample® Training sets Predictive sets U-test

1 2 3 4 S 6 7 8 9 10

1 OP 0.079 0.176 0.312 0.501 0.579 0512 0.345 0.243 0.129 0.097 U, =170
TP 0.075 0.170 0.321 0.484 0.573 0.536 0.327 0.232 0.119 0.089 U,=80
1dil 0.004 0.006 0.009 0.018 0.006 0.025 0.018 0.011 0.009 0.008 (Pure)

2 (0) 0.066 0.097 0.140 0.190 0.250 0.278 0.339 0.234 0.148 0.048 U, =170
TP 0.070 0.100 0.132 0.198 0.256 0.273 0.318 0.248 0.155 0.053 U,=80
Idil 0.004 0.003 0.008 0.008 0.006 0.005 0.021 0.014 0.007 0.005 (Pure)

3 opP 0.110 0.202 0.297 0.363 0.471 0.531 0.537 0.542 0.175 0.068 U, =190
TP 0.107 0.200 0.290 0.369 0.467 0.556 0.574 0.538 0.182 0.074 U,=60
idil 0.003 0.002 0.007 0.006 0.004 0.025 0.037 0.004 0.007 0.006 (Pure)

4 op 0.155 0.181 0.206 0.250 0.355 0.454 0.541 0.373 0.164 0.077 U, =200
TP 0.144 0.195 0.210 0.253 0.352 0.441 0.560 0.394 0.155 0.083 U,=30
idit 0.011 0.014 0.004 0.003 0.003 0.013 0.019 0.021 0.009 0.006 (Pure)

5 op 0.118 0.191 0.282 0.430 0.612 0.520 0.315 0.262 0.273 0.182 U,=250
TP 0.109 0.198 0.280 0.432 0.610 0.496 0.300 0.230 0.182 0.100 U,=00
Idil 0.009 0.007 0.002 0.002 0.002 0.024 0.015 0.032 0.091 0.082 (Impure)

6 op 0.192 0.321 0.494 0.534 0.544 0.433 0.360 0.294 0.222 0.163 U,=250
TP 0.188 0.320 0.492 0.532 0.543 0.455 0.434 0.380 0.321 0.258 U,=00
idil 0.004 0.001 0.002 0.002 0.001 0.022 0.074 0.084 0.099 0.095 (Impure)

OP = simulated values; TP = predicted values: Idil = absolute differences of OP and TP.

* Samples: 1= caffeic acid; 2 = 3.4-dihydroxybenzoic acid; 3 =salicylic acid; 4 = 4-hydroxybenzoic acid; 5 = caffeic acid + 5%

3,4-dihydroxybenzoic acid; 6 = salicylic acid + 5% 4-hydroxybenzoic acid.

the other two samples, the results of the U-test
indicate that the null hypotheses is rejected and
the conclusion is “impure”.

Fig. 3 shows the experimental signals obtained
from injection and computation signals from the
ANN estimate. For samples 1-4 no impurity can
be seen on the chromatogram from the ANN
estimate whereas a peak of an impurity in
samples 5 and 6 appears as a shoulder on the
ANN estimate. The fitted model from computa-
tion is of the correct form.

It is certainly insufficient only to perform
experiments on the samples in Table 3. To
illustrate the characteristics of the method, a
simulation test is necessary. Therefore, the ex-
periments on the simulated data sets were care-
fully designed and carried out.

As discussed in the literature [26,27], spectral
similarity, chromatographic resolution and the
concentration ratio of overlapping components
are main factors that affect the power to detect
impurities. Therefore, the data sets produced by

Eq. 3 were obtained to observe how these three
factors affect the performance of the assessment
of peak purity.

To evaluate the sensitivity of detecting an
impurity, a criterion value, LD (%), is computed
as the detection limit of an impurity which is
expressed as the percentage ratio of the con-
centrations of the least detectable impurity and
the main substance.

Considering the interaction of r and R, i.e.,
the effect that one can have on the other, the
different parameters were set so as to give r in
the range 0-1 at R, =0.30 and R, in the range
0-1.2 at r =0.52. The results are shown in Figs.
4-6, where the LD curves express the detection
limit of the impurity for a simulated case with
one impurity. In the area higher than the line, an
impurity can be detected, i.e., the output of
calculation for the sample with impurity is “im-
pure”.

In order to confirm the feasibility of the
proposed method, we compared it with some
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Fig. 3. Comparison of original chromatograms and predictive chromatograms by ANN. Peaks obtained from injection of the
sample (solid line) and ANN estimate (dotted line). Samples, see Table 3, Nos. (1-6).
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Fig. 4. Plot of LD versus r in a simulated two-component Fig. 5. Plot of LD versus R, in a simulated two-component
mixture (R, = 0.30) for comparison of ANN and PCA. (&) mixture (r=0.52) for comparison of ANN and PCA. (&)

ANN; (@) PCA. ANN; (@) PCA.
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LD(%)

Fig. 6. Plot of LD versus R, (<0.2) in a simulated two-
component mixture (r =0.52) for comparison of ANN and
PCA. (A) ANN; (@) PCA.

other approaches. We used to apply the absor-
bance ratio approach and principal component
analysis for routine analyses in our laboratory
[12]. With the first approach, one can observe
ratio chromatograms. However, one needs to
select carefully the instrumental parameters, e.g.,
wavelengths and noise threshold level, otherwise
erroneous results may be obtained. This means
that some preliminary tests need to be carried
out using this approach. The PCA algorithm has
been well demonstrated for peak purity control
in chromatography without assumptions regard-
ing peak shape and location. The potential power
of PCA is to abstract the representation of
components from the multivariate data of the
spectrum and chromatographic signals of the
components using eigenvalue decomposition by
matrix algebra. According to the algorithm of
PCA, the number of spectrally unique compo-
nents, n, needs to be decided [11,28]. Malinowski
[28] proposed the use of a derived probability
function to determine the number of factors
responsible. However, we found that the correct
detection of the number of spectrally unique

components (n) using this function depends on
the magnitude and characteristics of the error of
data sets. It often detected false impurities in a
simulation test, i.e., to0 many impurities were
detected. Another approach, ie., taking the
number of maximum eigenvalues with the pro-
portion of the total variance larger than 0.99,
seems to be more suitable for the data sets
simulated and was therefore adopted in our
study, although it cannot take the effect of noise
into account.

From Figs. 4 and 5, one first observes that
ANN and PCA have similar powers to detect
impurities. The lowest value of LD is about
3-5% for the data sets simulated.

In Fig. 4, it is noted that when the spectra of
the main substance and the impurity are very
similar, i.e., the correlation coefficient r is higher
than 0.8, ANN shows a lower LD than PCA,
probably because the model of ANN is built
based on the data from both chromatogram-
spectra and the chromatogram whereas PCA
only computes the chromatogram-spectral data.
Another reason is that half of the chromato-
gram-spectral data in ANN are used to build the
model, and the difference of the two parts of the
data is more evident than the whole data sets
evaluated in PCA.

In contrast, when r i1s lower than 0.4, PCA
obviously gives a lower LD value than ANN. It
is assumed that some information may be missing
in ANN when the spectra of the main substance
and the impurity are strongly separated, because
PCA computes the whole data sets whereas
ANN only uses half.

For the same reason, ANN in Fig. 5 is more
sensitive than PCA for detecting an impurity
with a similar retention to the main substance.
This is shown more clearly in Fig. 6. When R >
0.8 in Fig. 5, PCA gives a lower LD than ANN.

To conclude, the results show that ANN is
more effective than PCA for samples with a
lower chromatographic resolution and a greater
similarity of spectra between the main compo-
nent and impurity.

It should be emphasized that the chemical
purity cannot always be determined using this
method, although it can detect the differences in
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the retentions and spectra of the main com-
ponent and the impurity.

In addition to R, and r, the sensitivity of
determining the main substance is another pos-
sible factor affecting the LD value. Both simu-
lated data for a practical sample were tested and
the results are shown in Fig. 7. It was found that
a concentration of 0.01-0.05 mg/ml of the main
substance is appropriate for general applications
using this approach.

The simulated data sets were also designed
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Fig. 7. Plot of LD versus (a) peak height and (b) con-
centration of injection (mg/ml). (a) Simulated two-compo-
nent mixture. For data sets, see Table 1, except that the peak
height (h) was changed in the test. (b) Real sample: salicylic
acid + 5% 4-hydroxybenzoic acid.

for samples with a main component and an
impurity with different retentions and spectra.
In the data sets in Table 4, the centre wave-
length on the spectra and the retention time
on the chromatograms are combined in differ-
ent ways while all peak widths were fixed at
2. For cases 1-3, the proposed approach can
detect the impurity easily. For cases 2 and 3
with different centre wavelengths, the impurity
eluted in the front part of the peak while the
training was performed. This confirms that this
approach can be suitable in cases when the
impurity is located in both the front and back
halves of the peak. However, for case 4 the
neural network approach is incapable of show-
ing the existence of an impurity. It should be
noted that the spectral signals of the front and
back halves of the chromatographic peak base
should be similar owing to the symmetric data
sets for u, and g, of the main component and
the impurity for case 4. Therefore, the result
that the impurity cannot be detected is reason-
able.

Our studies indicate that when a powerful
computer is used, the neural networks ap-
proach may be capable of assessing chromato-
graphic peaks. Clearly, this approach appears
to have the advantage that it is unnecessary to
have reference substances for both the sample
and the impurity. The sensitivity of this meth-
od depends on the differences in the chro-
matograms and spectra of the component sub-
stances. Additionally, the simulation tests dem-
onstrate that it is wunnecessary to check
whether the retention of the impurity is great-
er or smaller than that of the main substance,
since the approach is based on the difference
in the spectra of two parts of the chromato-
gram.

Compared with PCA, ANN seems more sensi-
tive than PCA to an impurity with a similar
retention and spectral response, but it behaves
slightly worse than PCA for samples in which the
retentions and spectra of the main substance and
the impurity are strongly separated, since only
half of the data are used. Further, PCA can
predict the number of components in a mixture
or perform quantitative analysis whereas ANN
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Table 4
Computation results for data sets simulated

Training sets Testing sets U-test
1 2 3 4 5 7 8 9 10

Case 1

Con o, M K,
Main component 100 2 20 20
Impurity 30 2 17 23
OP 0.0383 0.0565 0.0764 0.0942 0.1057 0.1078 0.1004 0.0859 0.0683 0.0509 U =250
TP 0.0388 0.0571 0.0767 0.0943 0.1065 0.1109 0.1074 0.0974 0.0834 0.0681 U,=00
Idil 0.0005 0.0006 0.0003 0.0001 0.0008 0.0032 0.0070 0.0114 0.0152 0.0172 (Impure)
Case 2

Coax a, H, K,
Main component 100 2 20 23
Impurity 30 2 17 20
opP 0.0726 0.0853 0.0982 0.1089 0.1145 0.1132 0.1051 0.0924 0.0780 0.0648 U =250
TP 0.0681 0.0834 0.0974 0.1074 0.1109 0.10635 0.0943 0.0767 0.0571 0.0388 U,=00
Idil 0.0045 0.0018 0.0009 0.0015 0.0036 0.0068 0.0109 0.0157 0.0209 0.0260 (Impure)
Case 3

Cnan o, I Ky
Main component 100 2 17 23
Impurity 30 2 20 20
OP 0.0697 0.0840 0.0977 0.1080 0.1121 0.1084 0.0971 0.0809 0.0632 0.0472 U, =250
TP 0.0681 0.0834 0.0974 0.1074 0.1109 0.1065 0.0943 0.0767 0.0571 0.0388 U,=00
dil 0.0016 0.0006 0.0003 0.0006 0.0012 0.0019 0.0028 0.0042 0.0061 0.0084 (Impure)
Case 4

Covax o, e K,
Main component 100 2 17 20
Impurity 30 2 20 23
(0) 4 0.0401 0.0576 0.0769 0.0948 0.1073 0.1171 0.1075 0.0965 0.0818 0.0663 U =170
TP 0.0388 0.0571 0.0767 0.1074 0.0943 0.1065 0.1109 0.0974 0.0834 0.0681 U,=80

it 0.0022 0.0015 0.0007 0.0006 0.0023

0.0068 0.0137 0.0213 0.0278 0.0235 (Pure)

OP = simulated values; TP = predicted values; |dil = absolute differences of OP and TP.

cannot so far. Further work is needed on this
aspect.

5. Conclusions

The results of this work have shown that the
artificial neural network technique has consider-
able sensitivity for assessing peak purity in liquid
chromatography with photodiode-array detec-
tion. The accuracy relies upon the magnitude and

ratio of the peak heights of the main substance
and the impurity, the width of the chromato-
graphic peaks and the characteristics of their UV
spectra. The necessary information can be ob-
tained from the sample using a microcomputer
without the need for prior knowledge about the
impurity. It is possible to use this method to
check peak purity on-line for routine use or for
quality control in chromatography with photo-
diode-array detection. Further work will include
the investigation of quantitative calibration and
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the assessment of peaks consisting of more than
two components.
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